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Abstract 

Atomistic simulation methods were used to investigate and identify the relevant physical 
mechanisms necessary to describe the growth of helium gas bubbles within a metal lattice. 
Specifically, molecular dynamics simulations were performed to examine the material defects 
that originate from growing spherical He bubbles in a palladium crystal. These simulations 
consist of a model system containing bubbles within a metal and near a free surface. The 
simulation code employed was ParaDyn using the Embedded Atom Method to model the 
constitutive properties of Pd atoms in a FCC lattice. The results of these simulations are 
compared with previously run calculations of He bubbles in a bulk lattice [l]. These sim- 
ulations show the influence of the free surface on defect creation and evolution. Features 
compared include the formation of inter-bubble dislocations, bubble pressure and swelling 
as functions of He to metal (He/M) concentration. 

Keywords: atomistic simulation; crystal; kee surface; helium; bubbles; palladium; disloca- 
tions; boundary effects. 
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Introduction 

Helium (He) is a by-product of the decay of tritium. The insolubility of He with metals 
allows He atoms to be retained within the material by clustering at defects like dislocations. 
This clustering leads to the formation of nano-scale bubbles, which grow as the concentra- 
tion of He within the metal increases. The development of these bubbles has been observed 
experimentally within palladium [2, 31 and vanadium (41 tritide alloys, and is almost cer- 
tainly linked to  additional dislocations and other defects, e.9. clusters of self-interstitial 
atoms (CSIA), that form during periods of bubble growth. Of particular importance is the 
observation that once a critical concentration of helium to  metal atoms (He/M) is reached, 
helium gas is released from the material at an accelerated rate. For example, examination of 
aged palladium tritide PdT samples has revealed that when the ratio He/M reaches values 
between 0.5 to 0.55 [5, 61, a large amount of 3He is released. This critical ratio has been 
observed to vary as low as 0.3, depending upon system temperature, and whether or not 
tritium replenishment occurs. 

In an effort to understand the material defects created during He bubble growth and the 
mechanical interaction between these defects and the bubbles themselves, as well as predict 
the physical mechanism responsible for accelerated release of 3He gas, analytical (7, 8, 9, IO] 
and computational [l, 111 models have been developed to study these processes. Originally, 
the favored theory involved the punching of prismatic dislocation loops [8, 9, 10, 111 as 
the mechanism by which He bubbles could expand. These models produced reasonable 
predictions for bubble pressure and lattice swelling as a function of He content. Later 
models hypothesized the formation of dislocation pipes or threads [7], which could also act 
as diffusion paths for He atoms to traverse between bubbles and, eventually, to a grain 
boundary or a free surface culminating in a release of He gas. Support for this analytical 
model was shown through molecular dynamics calculations performed by Foiles and Hoyt 
[I]. Their simulations displayed the formation of dislocation threads that interconnected the 
bubbles, as well as other material defects such as vacancies and stacking fault tetrahedra. 
However, because their simulation utilized full periodic boundary conditions in order to 
represent a region of bulk crystal, it was not clear that these threads would serve as a path 
for accelerated release, or even what interaction they would have with a free surface or other 
geometrical inhomogeneity. 

The goal of this research is to investigate and identify the relevant physical mechanism 
necessary to describe the growth of He gas bubbles in metals. Specifically, criteria are 
needed for predicting the accelerated release of He from implanted and aged materials. 
Molecular dynamics simulations were used to examine the material defects that originate 
from growing spherical He bubbles within a Pd lattice. These simulations consist of a model 
system containing bubbles within a bulk metal and near a free surface. The simulation 
code employed was ParaDyn using the Embedded Atom Method to model the constitutive 
properties of atoms in Pd. The results of these simulations are compared with previously 
run calculations of He bubbles in a bulk lattice. This simulation set shows the influence of 
the free surface on defect creation and evolution. Features compared include the formation 
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of inter-bubble dislocations, bubble pressure and swelling &s functions of He concentration. 
Examination of pressure, volume and swelling characteristics of the systems and the bubbles 
for the free surface calculations reveals the need for improving the implementation of non- 
periodic boundary conditions. 



k 
Computational Methods 
Use of particle simulation methods is widespread in today’s age of computational materials 
analysis. There are many research problems in the study of both fluids and solids which 
require examination of the behavior of individual particles, in place of the continuum me- 
chanical approach of treating a material as a continuous and homogeneous medium. Such 
work includes study of the mechanics of fracture at a crack tip [12, 131 as well as the effect 
of defects such as dislocations, vacancies, interstitials, voids and inclusions on mechanical 
behavior. 

Simulation Methodology 
Equations of Motion 

Molecular dynamics (MD) is perhaps the most straightforward type of simulation method 
used by researchers to analyze materials problems. It involves deriving the equations of 
motion for a system comprised of a large number of particles, which results in a set of 
coupled ordinary differential equations, and solving these equations by discretization of time 
and approximation of time derivatives. The governing equation of motion is Newton’s 2“d 
law, 

In this expression, Fp denotes the force in the i th direction acting on particle a,  m, denotes 
that particle’s mass, and T; denotes the ith component of the particle’s position. The notation 
i is equivalent to the second time derivative, 3, of the variable z. As a convention, lower 
case Roman letters (2, j ,  k) denote a Cartesian coordinate direction (i = 1, 2, 3) and lower 
case Greek letters (a ,  p) denote the number designation for a particle belonging to a system 
of N particles. 

FP = ma+:. (1) 

Ensembles and Boundary Conditions 

Although the equations of motion and the numerical techniques used to solve those equations 
are of the utmost importance in examining the behavior of a system of particles, also of 
significance are the constraints applied to the system. This involves a discussion of two 
additional topics, ensemble type and boundary conditions. This section will address these 
issues as they relate t o  a MD simulation. 

The explanation of atomistic simulation necessitates a discussion about statistical me- 
chanics. Statistical mechanics is the method by which individual properties of particles from 
a system are used to calculate macroscopically observable and measurable quantities. A well 
known example is temperature, which is merely a measurement of the average kinetic energy 
of all particles that make up a system or body. These systems are referred to as ensembles 
and the observable quantities as ensemble averages. An atomistic simulation is usually con- 
strained such that certain ensemble averages remain constant. For instance, the equations of 
motion presented above are valid for an ensemble in which the number of particles, N ,  and 

9 
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total energy, E ,  are constants. In most MD simulat,ions, a const,ant volume, V ,  is specified 
either by employing rigid boundaries which provide external forces on some atoms, or by 
enforcing periodic boundary condit,ions, the latter of which will be discussed shady. Such 
systems are called microcanonical or NVE ensembles, after the three system quantities held 
constant. 

A common alternative is a system in which both temperature, T ,  and pressure, P ,  are held 
constant instead of system energy and volume. This ensemble is known as the isothermal- 
isobaric or NPT ensemble. Proper t,reatment of the NPT ensemble is done by allowing the 
system of particles to change volume (for constant pressure) and total energy (for constant, 
temperature) by t,he addition of ext,ra degrees of freedom to the equations of motion. The 
technique for adding ext,ra variables necessary for such simulations can be found in the book 
by Allen and Tildesley [14]. In these simulations, the desired t,emperature is 500 K and 
the desired pressure is zero. The extra degrees of freedom were used to alter the system 
boundaries in order to maintain this zero pressure condition, resulting in a swelling of the 
system t,hat can be quantified. 

The simulations performed for this work used periodic boundary conditions in order for 
the at,omic system to represent a slab of material of much larger extent in certain dimensions. 
If an atom is moved beyond the system’s boundaries, then its position is recalculated with 
the appropriate length subtracted, effect,ively moving the atom to other side of the simulation 
region. In this way, it, can be considered that the atom has left, t,he simulation region while its 
periodic image has entered it. Atoms near the periodic boundaries in these systems have the 
same energies and forces as bulk atoms because they effectively “feel” the periodic images 
of ot,her at,oms as their nearest neighbors. Thus, periodic boundary conditions allow a small 
simulation region with a limited number of particles to successfully model bulk material, 
enabling calculat,ion of bulk properties. These simulations also contain free surfaces. In t,he 
directions of these surfaces, the atomic motion is not constrained and periodic images are 
not, used. 

Material Model 

Inter-atomic forces are derivable from the potent’ial energy of the system, E. E is calculated 
using the Embedded At,om Method (EAM)? developed by Foiles, Baskes and Daw [15, 161, 

where there are N atoms within the system. In this expression, each atom’s potential energy 
is derived from two separate contributions. The first is the summation of pair potential 
energy between a given atom CL. and its neighbors 9, bop. These pair potential energies depend 
only on the radial separation of the two atoms, roo , and are representative of the repulsion 
between the ionic cores of atoms. The second contribution, Fa, is the energy necessary to 
“embed” atom a in an electron gas of some density pa composed of contributions from all 
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the neighbors p of the atom. The electron density is assumed to be a linear superposition 
of spherically-averaged atomic charge densities, 

hi 

where fo is an atomic charge density function. 

its position vector. Thus, 
The force on each atom can be determined by taking the derivative of E with respect to 

(4) 
rao N 

FQ = - [(FA(P*) f;i(r"@) + q P @ )  fA(raO)) + 4hP(~*@)I  r"p 
5#u 

The EAM potential parameters used for this research were the same ones used in the work 
by Foiles and Hoyt [l], and are detailed in Appendix A of that reference. 

Bubble Growth Model 

Growth of He bubbles is simulated by using several external repulsive potentials with ever- 
increasing ranges of interaction. Each potential is centered at a specific position RB (B = 1,2, 
3 or 4) with respect to the crystal lattice. The volume of these bubbles is increased linearly 
with time, resulting in bubbles of radius R for which R - t'l3. The repulsive potential 
functions are functions of the variable raB 111" - REll for cases where ruB < R. Here, 
rQ is the position of atom 0, RB is the position of bubble B and R is the radius of bubble 
B. Foiles and Hoyt [l] have already used this method to simulate bubble growth within a 
bulk metal lattice. Details about the functional form and parameters of the potentials can 
be found in Appendix B of [l]. 

Molecular dynamics simulations using EAM are executed using the ParaDyn code, devel- 
oped by Stephen Foiles and Steve Plimpton. This code is written in FORTRAN 77 and uses 
Message Passing Interface (MPI) commands for parallel processing operations [17]. The sim- 
ulation of bubble growth was broken into 60 separate simulations, each consisting of 50,000 
time-steps of 0.005 psec per time-step. Each set used either 64 or 128 nodes, and resulted in 
a computation time of either 16 or 1 2  hours, respectively, per simulation. These simulations 
were performed on the Delmar system, a 256-node cluster located at SNL/CA. Visualization 
of the simulation data was performed using Xmgr, a data-plotting tool on the local SUN 
workstation, and EnSight, a finite element visualization tool. Files were stored on the local 
file-system for CPlant/CA and on the Sandia Mass Storage System. 

System Geometry 
The system modeled by this project was a face-centered-cubic (FCC) metal lattice with di- 
mensions of 155.6 A (x-direction) x 155.6 8, (y-direction) x 210.06 A (z-direction), consisting 
of a total of 345,600 atoms. The boundary conditions applied to the system are periodic in 
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the x-y plane, a free surface at the top, and a fixed surface at the bottom. The fixed surface 
restricts atoms in the lowest (in the z-direction) plane of atoms to have motion only within 
the x-y plane. Four bubbles were placed within the lattice in a tetrahedral-like arrangement 
shown in Figure 1. The positions of the bubbles are held fixed relative to the simulation 

* e 
Z A 

L- 
Figure 1: (a) Side and (b) off-diagonal views of the system geometry: a FCC 

metal lattice containing four growing He bubbles. For clarity, only 
the bubbles and the top and bottom surfaces are shown. 

region. That is, the bubble centers only move within the horizontal (x-y) plane when the 
system’s lengths in those directions are scaled in order to maintain the zero pressure con- 
dition. The bubble centers are fixed in the z-direction, since that dimensional length is not 
scaled due to the rigid (bottom) and free (top) surface boundary conditions. 
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Simulation Results 

System Statisitcs 
The simulations of bubble growth were executed starting from an initial He concentration of 
zero up to approximately 36%. Pressure within each bubble is determined from a summation 
of the magnitudes of forces exerted on the atoms bordering the bubble's surface divided by 
the bubble's surface area. This pressure is viewed as representative of the effect of containing 
He gas within the bubble's volume. The plots in Figure 2 show the average bubble pressure 
as a function of the He content of the system, either as a ratio of He to Pd atoms, or as 
volume of He present in the system. For comparison, simulation results for a bulk system, %.e. 

bubble pressure 

150 

I 
0 0.1 0.2 0.3 0.4 0.5 

Figure 2: Average bubble pressure as a function of (a) ratio of He to metal 
atoms, and (b) volume of He. 

periodic boundary conditions on all sides, are shown in black while the simulation results 
for the free surface system are displayed in red. This convention is used for most figures 
that will follow, unless otherwise noted. Both curves show bubble pressure initially high, 
but decreasing monotonically with increasing He concentration. In Figure 2( a), the curves 
are overlapping, an expected result since the same equation of state (the relation between 
pressure, volume, temperature and density) is used. Examination of Figure 2(b) reveals 
that the free surface simulation set has slightly higher pressure at a given instant of time, 
or for a given volume of He in the lattice. This result counters the expectation that a free 
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surface system would have higher compliance than the bulk system, leading to a lower bubble 
pressure. 

The pressure and temperature of the entire system can be examined in order to assess 
whether the environmental conditions are the same for the bulk and free surface simulations. 
This is shown in Figure 3. The system temperature was set to 500 K, a value considerably 

(b) 
502 , , 

(a) 
I 

498 - 
0 0.1 0.2 0.3 0.4 0.5 

Figure 3: System pressure and temperature as a function of ratio of He to 
metal atoms. 

higher than room temperature, approximately 300 K. This was done purposefully in order 
to compensate for the short time scale inherent to molecular dynamics simulations. It was 
assumed that, at higher temperature, metal atoms are more agitated and material defects 
form sooner than at lower temperature. Also, simulation at 500 K enables these results 
to be directly comparable with the earlier simulations done in reference [l]. Simulation at 
lower temperature would presumably produce similar material defects in the metal with 
only slight shifts of the curves presented here. It is observed that the system temperature 
is being regulated to 500 K for both simulation sets, within an error of 1.5 degrees Kelvin. 
System pressure is not as well controlled. Although the system pressure oscillates for the 
bulk simulations, the mean appears to be zero. However, the oscillations for the free surface 
system are more extreme in magnitude, and the mean drifts upwards to non-zero values. 

Also examined are the volume fraction of He within the Pd lattice and the swelling of 
the metal. These results axe shown in the Figure 4. Figure 4(a) shows that for a given 
concentration of He, there is roughly the same, or slightly less volume fraction of He for the 
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(a> 
0.20, I 

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 0.3 

Figure 4: (a) Volume fraction of He and (b) swelling as a function of ratio of 
He to  metal atoms. 

free surface simulations as compared with the bulk simulations. This lower volume fraction 
is an expected result, although a larger difference was anticipated since the initial volume 
of the lattice itself is 35% higher for the free surface case. Figure 4(b) shows a significantly 
higher amount of swelling (defined as the change in system volume divided by the initial 
volume) for the free surface simulations. 

Material Defects 

The objective of this project is to investigate the nucleation of dislocations and other material 
defects that occurs during bubble growth. In order to image the dislocation and stacking 
fault structures created during bubble growth, the simulation data is filtered using the centrc- 
symmetry parameter developed by Kelchner, Plimpton and Hamilton [18]. This parameter 
equals a value of zero for atoms that possess a symmetric distribution of near neighbors, such 
as for a homogeneously deformed bulk lattice, and non-zero values for atoms that border 
surfaces, dislocation cores and stacking faults. The defects for some of the simulations can be 
seen in Figure 5. Also shown are the defects for the bulk simulations that correspond to the 
same bubble volume. In this figure, atoms are colored by their value of the centrc-symmetry 
parameter normalized by the square of the materials lattice constant: dark red is used for 
the lowest values (above zero) while bright yellow is used for the highest values. Note that 
the same bubble volume implies a lower He concentration for the free surface simulations, 
in agreement with the slightly higher pressure mentioned above. Both sets of simulations 
show dislocation threads connecting bubbles to each other, as well other defects such as 
vacancies (denoted by the small clusters of visible atoms) and stacking fault tetrahedra (the 
triangular-faceted structures visible in the free surface simulations at He/M = 0.04 and 0.2, 
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He/M = 0.04 He/M = 0.20 He/M = 032 

n a  
I 

Figure 5: Dislocations, defects and surfaces visible in the free surface (top 
row) and bulk (bottom row) simulations by using the centrc- 
symmetry parameter. 

16 
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and in the bulk simulations at He/M = 0.05). In the free surface simulations, the dislocation 
threads also connect the topmost bubbles with the free surface itself. At the early stages of 
dislocation nucleation (He/M = 0.04) in the free surface simulations, the dislocation threads 
appear to connect multiple points on a single bubbles surface, but remain attached only 
to that single bubble, except for the bubble at the upper-left, which does have threads 
connected to the free surface. At higher He concentrations (He/M = 0.2 and 0.32), the 
threads inter-connect the bubbles. Both simulations appear to show an increasing amount 
of defects with increasing He concentration, although a variable still needs to be developed 
to quantify the dislocation/defect content within a simulated crystal lattice. 

Visible in the figures of the free surface simulation seen above, is the distortion and 
roughening of the free surface itself. This can be seen more clearly in Figure 6, which shows 
the atoms that comprise the top surface of the crystal, colored by the height, 2.e. z-coordinate 
value. The figure shows a large variation in surface height, with a magnitude of variation of 

. .  

-7 117.21 
’ 110.86 

Figure 6: Top view of the free surface simulations. Height is indicated by 
the color key to the right. 

approximately 25.4 A, a distance spanning 6 unit cells or 12 atomic planes. An interesting 
feature of the surface roughening is that the portion of the surface at the peak height (located 
in the upper-left corner of each figure) is at a position with no bubble beneath it. Also, there 
is no matching peak at the surface position diagonally across from it (lower-right) that also 
lacks a bubble beneath the surface. This inhomogeneity is a product of dynamical motion, 
and shows that mechanical stresses are relieved in a specific area, thus negating the need for 
relief in symmetrically equivalent positions. The surface roughness figure does still possess 
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some natural symmetry, such as the lowest surface located in the center of the surface area, 
and at equivalent position at the corner of the side periodic boundaries. 

Also of interest is the fact that the highest value of surface height is not attained at the 
highest He/M ratio, but at an earlier ratio of 27%. Further examination of the dislocation 
and defect structure at that concentration shows a large amount of defects present at this 
concentration. This is shown in Figure 7. Compared with the earlier He/M ratio of 0.14 and 

HelM = 0.14 He/M = 0.27 HelM = 0.32 

‘-Y 

Figure 7 3-dimensional views of the free surface simulations. Atoms are 
made visible and colored by the cent,r@symmetry parameter. 

Lhe later ratio of 0.32, considerably more defects are present at He/M = 0.27. These defects 
are not only in the form of threading dislocations and voids, but a large amount of stacking 
fault planes are adjacently connected to several of the bubbles. The stacking faults could 
also be planes of punched dislocation loops. however they appear triangular in shape, which 
might not be consistent for spherical bubbles. How the FCC crystal structure affects the 
shape of punched dislocation loops is unknown, and there has been little research involving 
experimental observations of punched loops for multiple bubble systems. The abundance of 
defected crystal for this specific He/M ratio may indicate the absence of mechanisms in the 
model, which would otherwise lead to the accelerated release of He gas from the bubbles. 
Further research will be conducted to investigate this hypothesis. 



/I 

1 .  

Discussion of Simulation Results 

These simulations provide much insight into the mechanics governing the nucleation of dislo- 
cations and other material defects during He bubble growth in a metal lattice. The ability to 
predict these processes is critical for evaluating the stability of aged and implanted material 
containing inert gases. This research, like the work in [l], clearly shows that the precon- 
ception of bubble growth solely by dislocation loop punching is erroneous. Loop punching 
(LP) theory predicts prismatic dislocation loops that originate from the surface of bubbles 
and then separate from the bubbles themselves. The simulations performed show a domi- 
nance of threading dislocations, which continue to remain attached to the He bubbles, and 
the presence of additional material defects not accounted for in earlier theories, such as 
vacancies, voids, and stacking fault tetrahedra. LP theory also predicts the interaction of 
punched loops causing an eventual increase in bubble pressure with increasing He concentra- 
tion. These simulations show that for both cases, bubble pressure monotonically decreases 
with increasing He/M ratio. Increases in bubble volume simply lead to increased production 
of dislocation threads and stacking fault defects. 

The material defects observed for the free surface simulations differ from those in the 
bulk simulations in that a number of dislocation threads connect the higher bubbles to 
the free surface. Also, the dislocation distribution appears uniformly random for the bulk 
simulations. In contrast, more dislocations are present between the four bubbles and between 
the higher bubbles and the free surface than between the lower bubbles and the bottom, fixed 
surface. However, at higher He/M ratios, some dislocations are present in this lower region, 
and connect the bubbles to the bottom surface layer. This indicates that a more realistic 
boundary condition may be required to truly emulate a system of much greater thickness for 
the He/M ratios at which accelerated release of He gas would occur. 

There is some concern in the interpretation of results of the free surface simulations, 
as compared with the bulk simulation. One issue is the variation of system pressure with 
increased He/M ratio. Unlike the bulk simulations, which oscillate about a zero system pres- 
sure, the pressure for the free surface system increases with age, although large oscillations 
are present for both simulation sets as shown in Figure 3. The cause of this excess compres- 
sion in the system can be attributed to the component of stress for the direction normal to 
the free surface, the z-direction for the simulation region. Figure 8 shows the normal stresses 
for this direction, as well as the x- and y-directions which are parallel to the free surface. It’s 
clear that although large magnitude oscillations are present, the system-averaged stresses 
os= and uvv have a mean value of zero with increasing He concentration, while the mean 
value of ozz tends towards negative (compressive) values. 

Several aspects of the free surface simulations were examined in order to determine the 
cause of this excess compression. The most obvious feature of the simulated system to be 
scrutinized is the fixed boundary condition for the bottom-most atomic plane. These atoms 
are allowed to move within the horizontal x-y plane, but are restricted from motion in the 
vertical z-direction. This is done so that the system represents a semi-inhite solid, with the 
hope that the interactions between the bubbles and the free surface will be more significant to 
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Figure 8: Normal stresses for the system as a function of ratio of He to metal 
atoms. 

the system's behavior than any interactions between the bubbles and this fmed plane. Also, 
the impact of fixing this atomic layer should be minimal as only 6400 of the 345,600 atoms 
(1.85%) are subject to this boundary condition. However, the absence of neighbors below 
these atoms results in a higher atomic potential energy, and may also lead to some amount 
of surface stress. It is, as yet, unclear what the effect this additional stress contribution 
should have on the system pressure, and it may also be affecting the average bubble pressure 
observed during bubble growth. 

The focus on the fixed boundary condition, rather than the free surface, is justified by 
considering the simple 2-dimensional elasticity problem of a thick-walled cylindrical shell 
containing a pressurized cylindrical hole, pictured below in Figure 9. For this system, elas- 
ticity theory predicts that the 2-dimensional hydrostatic stress (OH = om + ffee = ffsc + ovv) 
at any point in the material is independent of position and, 

where p is the pressure of the gas within the hole, R, is the outer radius of the thick-walled 
shell and R, is the inner radius of the shell. Since this value is constant, the volume integral 
of O M  is 

However, the isobaric condition used in simulation takes into account not only the stress in 
the material, but also the stress in the bubbles. The hydrostatic stress OH for this case is 

20 



r'igure 9: A thick-walled cylindrical shell containing a gas of pressure p 

- p  and the volume integral is 

UHdV = - p  * hole = -plrR:. Le 
J "system 

Thus, the volume integral of hydrostatic stress for the entire system is 

2 UHdV = p?rR, - prR? = 0. 

This simple analysis shows that for only free boundaries and a pressurized hole, an elastic 
medium develops a hydrostatic stress that exactly balances, in a volume-averaged sense, the 
pressure within the hole. Thus, any discrepancy should come either from the fixed boundary, 
or some non-elastic aspect of the MD simulation. 

The effect of a fixed bottom boundary for an elastic medium was investigated using 
a finite element (FE) calculation of a pressurized cylindrical hole inside a linear elastic, 
2-dimensional, rectangular region. The system analyzed is pictured below in Figure 10, 
which shows (a) the mesh used and (b) the area integration of the normal stress uvv. The 
mesh in Figure 10 contains 1,609 nodes and 1,490 elements. The nodes along the bottom 
boundary for this region are constrained against vertical (y-direction) motion, the nodes 
on the side boundaries are constrained against horizontal (x-direction) motion, and the 
top surface is free. It was observed that for a set amount of normal surface traction on 
the hole, corresponding with a certain amount of pressure, it was always the case that 
material region deformed such that the area integration of normal stress uvu roughly equaled 
the product of the pressure value and the area of the hole. In other words, the normal 
stress in the solid balanced the pressure loading of the hole in the free surface normal's 
direction, just as for the simple thick-walled shell already discussed. In contrast, since 
both side boundaries are constrained, only a specific amount of stretch in the horizontal 
direction satisfies the condition that the area integration of normal stress uzz equals that 
same product of pressure and hole area. This agreement of JugudA = w R 2  (where R is the 
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Figure 10: (a) FE mesh of a pressurized cylindrical hole in a linear elastic, 
2-dimensional, rectangular region. (b) The same mesh with el- 
ements colored according the area integration of normal stress 
ow. 

radius of the hole) became more precise as the number of nodes and elements were increased 
to 8,342 and 8,043, respectively. It was also verified that for a rectangular, elastic region 
containing multiple pressurized cavit,ies, pictured below in Figure 11, 1 oyydA = Cp7rR2. 
The right hand side of this equality is just the linear summation of the product of each 
hole’s pressure and area. Finally, t,he original geometry shown in Figure 10 was analyzed 
with an entire set of nodes fixed along the bottom of the rectangular region, not just those 
bordering the bottom boundary. The region was stretched horizontally (in the x-direction) 
so t,hat suz,,dA = p R 2 .  For this situation, the area integration of ovy exceeded the 
value of p.rrR2, producing an excess tension within the system. The excess tension is an 
expected result as the vertical constraint of a finite-width region act,s as a constraint against 
the Poisson contract,ion that would otherwise take place upon horizontal stretching of the 
system. However, since this stress is the opposite sign observed in the MD simulations, it 
does not explain t,he result of an excess compression. 

Another possible explanation for excess compression observed is the inelastic behavior of 
the metal during bubble growth. Specifically, as the bubbles grow they nucleate dislocation 
threads in order to accommodate t,hat, growth. These dislocations relieve the tensile stress 
within the material that, until that point, is balancing the elastic loading of the pressure 
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I -  Figure 11: (a) FE mesh of a linear elastic, 2-dimensional, rectangular region 
with multiple pressurized holes. (b) The same mesh with elements 
colored according the area integration of normal stress vuv. 

within the bubbles. Assuming that dislocation emission relieves most of the stress within 
the metal, the system stress uez should be approximately equal to the product of the bubble 
pressure and the volume fraction of He in the lattice. This possible explanation was investi- 
gated using results from an early portion of the simulation set, at a He/M ratio of 0.025 and 
a volume fraction of He equal to 0.013. For this volume fraction, the average bubble pressure 
was 90 kbar, resulting in an expected residual compression of approximately -1.17 kbar. In 
fact, the calculated value of us= for the system varied within the range of -0.09 to -1.3 kbar. 
At a later portion of the simulation set, He/M = 0.07 and volume fraction = 0.046, this 
was again measured. In order t o  eliminate thermal effects, the system’s potential energy 
was minimized at this bubble size and zero system pressure using a conjugate gradient algo- 
rithm. This minimized system maintained a residual compression for uzz equal to -1.22 kbar 
for a bubble pressure of 64.76 kbar. Once minimized, the repulsive bubble potentials are 
“turned-off” and the system was observed to now have a residual tension of 1.87 kbar. Since 
the system’s average stress is a volume average of this residual tension within the metal and 

of residual compression in the system is 
* the pressure within the bubbles (when the bubble potentials are “turned-on”), the amount 

u,, = -64.76 * 0.046 + 1.87 = -1.1 kbar. 

This value is very close to the observed value of -1.22 kbar. It does appear that this explana- 
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tion of excess compression due to relief of stress within the metal by dislocation production 
is consistent with the simulation results. 

One further explanation examined is the idea that the system is artificially constrained. 
Simulation sets from both the bulk and free surface simulations were selected and energy 
minimized in the manner described above. The resulting systems showed that even for a 
minimized configuration, the metal atoms exerted a significant, non-zero net force on each 
bubble. An interesting feature is that, for the bulk simulations, the vector sum of forces 
on all four of the bubbles is nearly zero. For example, at a He/M ratio of 0.1, the volume 
fraction of He for the minimized system is 0.062 and the average bubble pressure is 74.98 
kbar. The sum of the forces on all bubbles in the x, y and z-directions are 0.004 eV/A, 
0.0027 eV/A and -0.0005 eV/& respectively. These values are very small when compared 
to the individual x, y and z forces on each bubble, which ranges from -26 to 35 eV/A. 
In contrast, for the free surface simulation set with bubbles of the same radius, He/M GZ 

0.07, volume fraction of He equals 0.045, average bubble pressure equals 48 kbar, and the 
sum of the forces on all bubbles in the x, y and z-directions are 0.0033 eV/A, -0.01 eV/A 
and 43.56 eV/%r, respectively. Clearly, the net force on all bubbles in the z-direction, the 
direction of the free surface normal, is significant and should not be ignored. As for the bulk 
simulations, the forces on each individual bubble are significantly non-zero and range from 
-25 to 34 eV/A. The logical next step for improving the bubble growth model is to allow the 
bubbles to reposition themselves so that, upon energy minimization, the net force on each 
bubble, as well as the vector sum of the forces on all bubbles, is nearly zero. This proposed 
improvement will be discussed in the next section. 

As stated above, for the same amount of bubble volume, the free-surface simulation 
predicts a higher bubble pressure than for the bulk simulations. Mechanics intuition would 
lead one to conclude that the presence of the free surface should make that system more 
compliant, and expect a lower bubble pressure. It’s conceivable that the constraint of fixed 
bubble position is responsible for this lack of compliance. Through its impact on bubble 
pressure, this constraint may also be affecting the volume fraction and swelling behavior 
noticed earlier. Finally, the wealth of material defects present at He/M = 0.27 may indicate 
a critical point in the evolution of the bubble growth. More thought is required to provide 
the correct interpretation of this feature. 
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Summary and Future Directions for Research 

This research used molecular dynamics simulations to investigate the origins of material 
defects caused by the growth of He gas bubbles in Pd crystal lattice. Periodic, free and 
rigidly fixed boundary conditions were used to model bubble growth near a free surface in a 
sample of macroscopic thickness, and were compared with previously-determined results for 
bubble growth within a bulk lattice [l]. Simulation results for both systems conflict with pre- 
conceived theories of dislocation loop punching. They show bubble pressure monotonically 
decreasing with He concentration and the formation of threading dislocations as opposed to 
prismatic loops. Since these characteristics are seen in both free surface and bulk simulations, 
the implementation of the fixed boundary condition does not alter this finding. By their 
nature, the simulations more accurately predict the features of atomic-scale defects than 
conventional continuum theories. They also allow the visualization of defects and processes 
that are intractable at the experimental scale. The types of defects created were similar for 
both systems, although the presence of a free surface noticeably affects their distribution. 

Several features observed for the free surface simulations were not expected and are 
counter-intuitive. For a given volume of He gas, the free surface system reached a higher 
average bubble pressure than did the bulk system. This higher pressure is not consistent 
with the observation that the free surface system has increased swelling over the bulk system 
for a given He/M ratio. These characteristics may be connected to a build-up of compressive 
normal stress in the free surface normal’s direction. Several possible causes for this build-up 
were noted and investigated, including the rigid boundary condition for the bottom atomic 
layer, relaxation of stress within the metal due to the formation of dislocations and other 
material defects, and the artificial constraint imposed by holding the bubble centers fixed 
relative to the simulation geometry. 

Future work for this project will involve the isolation and elimination of the origin of the 
excess compression that was observed in the free surface simulations. A series of simulations 
will be performed to study He bubble growth within a Pd thin-film, i.e. free boundary 
conditions on both the top and bottom surfaces. These simulations will help characterize 
the influence of the rigid boundary condition present in the simulations discussed in this 
report. It was noted previously that by constraining the position of the bubble centen, the 
metal atoms exert a significantly non-zero net force on each bubble for both bulk and free 
surface simulations. The bubble growth algorithm will be modified to include extra degrees of 
freedom for each bubble. Hence, each bubble will have its own “equation of motion”, and will 
move according to the direction and magnitude of these forces. The mass attributed to each 
bubble will be estimated from the number of He atoms each bubble contains (calculated 
according to the same equation of state used for this work, detailed in Appendix B of 
[l]) times the atomic mass of Pd atoms, rather than the mass of He atoms. Preliminary 
simulations done prior to the completion of this report indicate that the heavier mass is 
necessary to ensure physically realistic motion of the bubbles at small bubble volumes. Also, 
it has been experimentally observed that bubbles move only by preferential growth in certain 
directions, rather than by ”plowing” past surrounding metal atoms [19]. Thus, a maximum 

25 



SUMMARY AND FUTURE DIRECTIONS FOR RESEARCH 

displacement per timestep will be enforced to ensure that each bubble does not move more 
than the amount of increase of its radius. Once these modifications have been implemented 
and tested, future simulations will correct the unanticipated behavior mentioned above and 
provide more insight into the physical mechanisms that are active to create material defects 
during He bubble growth, and how these defects interact and lead to the accelerated release 
of He gas. 
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EAM 
FCC 
FE 
He 
LP 
M 
MD 
MPI 
Pd 
PdH 
PdT 

Embedded Atom Method 
face centered cubic 
finite element 
helium 
loop punching 
metal 
molecular dynamics 
Message Passing Interface 
palladium 
palladium hydride 
palladium tritide 
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